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An enhanced aerosol layer near the tropopause over Asia during the
June–September period of the Asian summer monsoon (ASM) was
recently identified using satellite observations. Its sources and climate
impact are presently not well-characterized. To improve understand-
ing of this phenomenon, we made in situ aerosol measurements
during summer 2015 from Kunming, China, then followed with a
modeling study to assess the global significance. The in situ measure-
ments revealed a robust enhancement in aerosol concentration that
extended up to 2 km above the tropopause. A climate model simu-
lation demonstrates that the abundant anthropogenic aerosol pre-
cursor emissions from Asia coupled with rapid vertical transport
associated with monsoon convection leads to significant particle for-
mation in the upper troposphere within the ASM anticyclone. These
particles subsequently spread throughout the entire Northern Hemi-
spheric (NH) lower stratosphere and contribute significantly (∼15%)
to the NH stratospheric column aerosol surface area on an annual
basis. This contribution is comparable to that from the sum of small
volcanic eruptions in the period between 2000 and 2015. Although
the ASM contribution is smaller than that from tropical upwelling
(∼35%), we find that this region is about three times as efficient
per unit area and time in populating the NH stratosphere with aero-
sol. With a substantial amount of organic and sulfur emissions in
Asia, the ASM anticyclone serves as an efficient smokestack venting
aerosols to the upper troposphere and lower stratosphere. As eco-
nomic growth continues in Asia, the relative importance of Asian
emissions to stratospheric aerosol is likely to increase.
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It is well documented that volcanic eruptions can inject aerosol
and aerosol precursors into the stratosphere, resulting in cooling

at the Earth’s surface (1, 2). In addition, a recent study (3) found
that nonvolcanic stratospheric aerosols have a large cooling impact
on climate, contributing about 20% of the aerosol radiative forcing
relative to 1850. In the absence of volcanic injections, the largest
source of stratospheric aerosols is transport from the tropical
upper troposphere (4). Recent studies indicate that the Asian
summer monsoon (ASM) anticyclone, which creates a dome or
“bubble” of tropospheric air above the zonal mean tropopause (5),
may also effectively transport tropospheric air into the stratosphere
(6, 7). Satellite data show that the ASM system transports surface
pollutants (e.g., carbon monoxide and hydrogen cyanide) to the
upper troposphere (UT) and confines them within the upper-level
ASM anticyclone (8, 9). The pollutants in the UT ascend across the
tropopause into the lower stratosphere (LS). Trajectory analysis
supports the role of the ASM system as a conduit for air parcels

from the UT into the tropical and subtropical stratosphere (10–13).
However, the transport efficiency to the stratosphere, especially for
aerosols, and the resulting impact of ASM transport on strato-
spheric composition have not been quantified.
Satellites have observed values of aerosol extinction within the

ASM anticyclone that are elevated relative to the global mean (14,
15). This enhanced aerosol extinction has been denoted the Asian
Tropopause Aerosol Layer (ATAL). The satellite observations do
not have sufficient vertical resolution, nor do they provide the
accurate size distributions needed, to fully understand the pro-
cesses that form and maintain the ATAL. Model simulations (16)
suggest that the ATAL particles are composed of organics (mostly
secondary organics formed in situ) and sulfate. However, the
sources, spatial distribution, composition, and climate implications
of the enhanced aerosol layer are not well understood, primarily
due to the lack of in situ measurements of the size distribution and
other physical/chemical properties. Although in situ balloon mea-
surements have been made previously (17), the instrument used
was not sufficiently sensitive to provide a detailed size distribution.
Recent years have seen large economic growth in Asia, resulting

in increased anthropogenic emissions, including aerosol precur-
sors. Deep convection associated with the ASM transports these
precursors to the UT and LS where they contribute to aerosol
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nucleation and growth. Using satellite observations and model
simulations, Vernier et al. (18) reported that the aerosol optical
depth (AOD) of the ATAL has increased by 0.002 from 2000 to
2010. In this paper we present detailed aerosol size distribution
profiles measured within the ASM anticyclone. We use the mea-
surements to verify that the results from a detailed aerosol mi-
crophysics module coupled with a global climate model are
representative and subsequently use the model output to assess
global significance.

Results and Discussion
To study the vertical structure and size distribution of the ATAL we
launched three balloon sondes from Kunming, China (25°N, 102°E)
on August 13, 14, and 17, 2015. Each balloon carried an optical
particle spectrometer, POPS (19), making high-quality in situ profile
measurements of aerosol particle number density and size distri-
bution in the 140- to 3,000-nm diameter range. Data were collected
from the surface to 28 km in altitude. Each balloon payload also
included sensors for ozone (20), water vapor (21), and optical
particle backscatter (22). Additional measurements of temperature,
pressure, and relative humidity were made with an Intermet (iMet-
1-RSB) radiosonde on the same balloon. To place the measurement
location in context, we show in Fig. 1 the time-averaged geo-
potential heights at 100 hPa from the Goddard Earth Observing
System Version 5 data assimilation averaged for the time period of
balloon operations. The area with the highest geopotential height
(red in Fig. 1) indicates the center of the ASM anticyclone circu-
lation. Five-day back trajectories using the National Oceanic and
Atmospheric Administration (NOAA) HYSPLIT model were ini-
tiated at Kunming just above the tropopause for each of the balloon
flight days. These trajectories show that the air sampled by the
balloons is representative of the ASM anticyclone region.
The particle surface area density (SAD) vertical profiles in the

UT and LS over Kunming (Fig. 2) exhibit an enhanced layer near
the tropopause. This aerosol layer extends from several kilometers
below the tropopause up to 2 km above the tropopause. The layer
is consistent with the location of the ATAL observed in satellite
measurements and hereafter we will refer to it in that manner. The
low values of SAD in the profiles below this layer suggest that
aerosol from the lower troposphere is efficiently removed by

scavenging associated with monsoon convection, and the ATAL is
subsequently formed by in situ production of new particles from
photochemically active sulfur and organic trace gases that were not
completely scavenged during uplift. We note that the vertical
aerosol distribution near the tropopause presented here is similar

Fig. 1. Geopotential height at 100 hPa from the GEOS5 data assimilation, averaged from August 13–21, 2015. The black triangle denotes Kunming, China
(25.1°N, 102.7°E). Five-days backward trajectories at 100 hPa over Kunming on August 13, 14, and 17 are shown in colored lines and dots on each trajectory
line indicate positions at 1-d intervals. The 5-d trajectory uncertainties are estimated as ±5° latitude and ±11° longitude.
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Fig. 2. Aerosol SAD (square micrometers per cubic centimeter) vertical profiles
in the UT and LS measured by POPS above Kunming, China (25°N, 102°E) on
August 13, 14, and 17, 2015 (red, blue, and green lines) and simulated by
CARMA averaged over the anticyclone region (black line). Gray shading denotes
the range of spatial–temporal variability in the modeled profiles over the an-
ticyclone region. The vertical coordinate is altitude relative to the tropopause.
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in shape (yet about three times as high in SAD values) to that
observed in the tropics (4, 23), suggesting a similar formation
mechanism. Once air parcels convectively lofted in the ASM reach
the UT they tend to be contained by the strong anticyclonic cir-
culation while continuing to ascend slowly into the LS. During this
period of slow ascent, photochemistry produces lower volatility
species that both nucleate new particles and condense on pre-
viously formed particles.
The observation of enhanced aerosol above the tropopause

clearly indicates that air enters the stratosphere within the anticy-
clone, consistent with the conceptual model described in ref. 7 and
shown in Fig. S1A. The similarity in the measured particle size
distributions in the UT and LS (Fig. S2) suggests that nearly all of
the formation of secondary organic aerosol (SOA) from short-lived
photochemically active gases takes place in the UT. The back-
trajectory analysis (Fig. 1) indicates that the air parcels sampled
by the three flights have been circulating in the ASM for several
days and are representative of a large area of the ASM. The fact
that the ATAL was consistently observed in each flight suggests that
it is a robust feature distributed throughout the ASM anticyclone.
Our measurements show that the aerosol SAD decreases by

about 80% between the tropopause and 2 km above the tropopause
(Fig. 2). Because there is no known sink of aerosol mass in the LS
and particle sedimentation is negligible during the 4-mo ASM
season for the particle sizes observed, this decrease must be due to
horizontal mixing with cleaner background stratospheric air as the
anticyclone weakens at higher altitudes (7). We hypothesize that
the ATAL particles mix out of the anticyclone and are transported
throughout the entire Northern Hemisphere (NH) midlatitude belt.
Previous studies have suggested that pollution could be trans-

ported horizontally from the ASM region into the core of the
tropical stratospheric upwelling region (8, 9). However, based on
the latitudinal location (20–40°N) and height (17–19 km) of the
ASM anticyclone, it is not clear how much of the air that ascends
within the ASM anticyclone moves upward in the tropical LS vs.
moving poleward and then descending through the lower extra-
tropical branch of the Brewer–Dobson circulation. To further in-
vestigate the transport pathway for ASM aerosol, we use the
Community Aerosol and Radiation Model for Atmospheres
(CARMA) sectional aerosol model coupled with the Community
Earth System Model (CESM); details are given in ref. 24. In
general, the model, averaged over the entire ASM anticyclone
region for August 2015, reproduces the vertical profile of aerosol
surface area and size distribution observed by POPS in the UTLS
reasonably well (Fig. 2). Modeled SAD in the UT (2–10 km below
the tropopause) is generally higher than the observed values (Fig.
2), suggesting insufficient wet removal, whereas the agreement
near the tropopause is very good. Additional model validation for
global UTLS aerosol has been reported in previous studies (3, 16,
24). In particular, the modeled AOD of the ATAL is about 0.008
(16), and that observed AOD by Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observation is about 0.005 (18).
It is likely that there are deficiencies in the convective transport

and scavenging in the model (25, 26), as evidenced by the dis-
crepancies between model and measurements in the mid tropo-
sphere. However, for the purposes of this study, our interest is in
the UT and LS (UTLS) where measurement/model agreement is
good. For this study, it is the accuracy of the aerosol amounts and
transport in the UTLS that is most important. In the UTLS, the
slow ascent of air in the UT within the ASM anticyclone is in
balance with dynamical and radiative processes. The level of zero
radiative heating occurs near 15 km in the model, with positive
heating rates above that, consistent with other climate/radiation
models (27, 28). There are sources of uncertainty: Studies (27, 28)
have shown that UTLS radiative heating and corresponding air
motion are sensitive to the vertical distribution of clouds, which
likely introduces some errors. Other uncertainties exist in regards
to aerosol transport, including inaccuracies of subgrid scale

parameterizations. Although we do not quantify those uncer-
tainties relative to reality, our subsequent model analysis examines
the differences between runs of the same model system, which
likely minimizes errors in our conclusions.
In our model, the ASM aerosol enters the LS both through as-

cent above the local tropopause in the ASM anticyclone and by
horizontal transport out of the ASM dome (as indicated by black
arrows in Fig. S1A). To diagnose the ASM contribution to the
global stratospheric aerosol we compare two model simulations.
The first is a normal, unperturbed control run that includes the
ASM contribution to the stratospheric aerosol loading. For the
second, we remove the ASM effect by eliminating all particles and
aerosol precursor gases within the ASM anticyclone dome. One
exception is carbonyl sulfide (OCS), which is a long-lived, well-
mixed tracer; ASM-related transport of OCS is not expected to
significantly affect the stratospheric aerosol budget. For ease of
computation, a 3D box (Fig. S1B, volume colored in magenta,
15°–45°N, 30°–120°E, with latitude-dependent depth) is used to
represent the dome during the period June through September
(hereafter referred to as the 3D-box run). The difference between
the control run and the 3D-box run represents the contribution of
the ASM to the overall stratospheric aerosol. We use the ratio of
that difference relative to the control run to compute the percent
contribution plotted in this paper. Model details are given in
Methods. For simplicity, only aerosol surface area densities, which
are proportional to optical depth and therefore more relevant to
radiative effects than number and volume densities, are discussed in
this paper. As shown in Fig. 3A, the ASM contribution to strato-
spheric aerosol is confined to the NH. Its largest contribution is in
the 10°N–40°N latitudinal band, and the peak coincides with the
ASM anticyclone region. In the peak region, ∼20–35% of the an-
nual averaged stratospheric column aerosol surface area is attrib-
utable to the ASM aerosol. Fig. 4A illustrates the cross-latitude
transport of the ASM aerosol in the stratosphere. Between August
and December a large portion of ASM aerosol moves poleward
following the lower branch of the Brewer–Dobson circulation. The
aerosol is eventually flushed out of the stratosphere at high latitudes.
The large contribution from the ASM to stratospheric aerosol

SAD in the NH (about 15% annually) is statistically robust (Fig.
S3). The lower and upper bounds of the contribution are 10% and
25.4% (Fig. S4 A and B), respectively, determined through sen-
sitivity study runs using either a shallow or deep 3D box. A shallow
box eliminates vertical transport across the tropopause within the
ASM anticyclone, whereas a deeper box also eliminates horizontal
mixing out of the ASM anticyclone dome region. Detailed de-
scriptions of the shallow and deep 3D boxes are given in Methods.
Our model results indicate that the ASM’s contribution to the LS
in the anticyclone region is primarily from direct vertical ascent.
Contributions to the broader NH stratosphere are the result of
horizontal mixing out of the ASM region. An alternate method
(alternative 3D box hereafter) to estimate the ASM contribution is
to set the concentrations of the various tracers inside the anticy-
clone to the mean of their values in the surrounding region (i.e.,
150°–210°E, 15°–45°N) at each model step. As shown in Fig. S5,
the heating rates inside the anticyclone are significantly higher
than those in the adjacent regions outside of the anticyclone. The
heating rates inside the model cannot be adjusted, and as a result
of this greater heating particles in the lowest layer of the UT are
pumped to higher altitudes faster inside the ASM anticyclone,
resulting in an exaggerated upward aerosol flux in the model
relative to what would be expected in reality. This exaggerated flux
prevents the complete removal of the ASM effect on the strato-
spheric aerosol. Thus, this method provides another estimate of
the lower limit of the ASM contribution. The lower limit calcu-
lated using this method is 7% (Fig. S4C).
Tropical upwelling has long been known to be the major pathway

for transport of tropospheric aerosol into the stratosphere (4). To
quantity the contribution to stratospheric aerosol from tropical
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upwelling we performed model simulations removing particles and
condensable gases from the inner tropics (15°S–15°N, 0°–360°E) for
the entire year. Our model results show that 35% of nonvolcanic
stratospheric aerosol surface area in the NH is a consequence of
upwelling from 15°S–15°N. As shown in Fig. 3B, the contribution
from the inner tropics decreases from the equator (∼50%) to high
latitudes (∼20%). In the ASM region, the model estimates that
∼70% of stratospheric aerosol originates from tropospheric SO2
and organics, with roughly equal contributions from within the
ASM and from the tropics. At mid to high latitudes (40°–90°N), the
ASM’s contribution (10–20%) is less than, but still comparable to,
the tropical contribution (25–35%). The remaining sources of
stratospheric aerosol are attributed to OCS and troposphere–
stratosphere transport from other regions; there is still upwelling
from 15° to the subtropical jet edge (which, depending on season,
can extend to the midlatitudes).
The ASM contribution to stratospheric aerosol is difficult to

directly quantify using measurements alone partially due to con-
tributions from volcanic eruptions. Large volcanic eruptions, such
as that of Mt. Pinatubo in 1991, greatly enhance the stratospheric
aerosol loading for periods of up to a few years depending on the
latitude, time, and injection height of the eruption (29). Since
2000 a number of smaller volcanic eruptions have contributed to

variability in the stratospheric aerosol layer (30, 31). To assess the
significance of the ATAL relative to recent volcanic activity, we
performed a simulation of the 2011 Nabro volcanic eruption
(13.37°N, 41.7°E), which was one of the larger tropical eruptions in
recent years and contributed 23% of the volcanic SO2 injected
above 10 km between 2000 and 2015 (30–32). Details of the model
simulations are described in Methods. The model results show that
the 2011 Nabro eruption led to an increase of ∼60% in the NH
stratospheric aerosol surface area for about 1 y (Fig. 4B). Due to
the consistent annual contribution of the monsoon (∼15% for the
NH stratosphere annually), our study shows that the ASM makes a
contribution comparable to that of the combined small volcanic
eruptions in the period 2000–2015 (Methods).

Conclusions
Although the major sources of stratospheric aerosols are volcanic
eruptions, tropical upwelling, and production due to OCS reac-
tions, in this study we find that the ASM’s contribution to the
stratosphere is significant, on the order of 15% for the NH an-
nually. This is comparable to the combined contribution from
small volcanic eruptions over the period from 2000 to 2015. An-
thropogenic emissions in the ASM region are much larger than
those averaged over the entire tropics, allowing the ASM to be a

A

B

Fig. 3. (A) Contribution (percent) to the annual mean particle surface area in the stratosphere from aerosol that is transported through the ASM 3D box
(15°–45°N, 30°–120°E, June–September). (B) Contribution to the annual mean particle surface area in the stratosphere from aerosol that is transported
through the tropics (15°S–15°N, 0°–360°E, entire year). The white box in A shows the spatial extent of the region included in the 3D box where we scrub the
aerosol and aerosol precursors.
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significant source (7.5% globally averaged) even though it only has
an area that is 22% of that of the inner tropics (15°S–15°N,
0–360°E, 35% contribution to the global stratospheric aerosol).
Given that the ASM anticyclone is only active for about 4 mo in
each year, the ASM is currently about three times as effective in
populating the NH stratosphere with aerosol as the tropics
(Methods). The ASM’s contribution to the stratosphere is expected
to grow as emissions increase from the rapidly expanding econo-
mies in Asia. Studies (10, 33) indicate that the dominant source of
air within the ASM anticyclone is from the Indian subcontinent.
With a substantial amount of organic and sulfur emissions in Asia,
the ASM anticyclone is indeed an efficient chimney venting
aerosols to the stratosphere, and its importance is likely to increase
with time (34, 35).

Methods
Particle number size distribution was measured by custom-built POPS (18) with
sufficiently low size detection limit to capture over 60% of the ATAL particle
surface area (Fig. S2). The small size and lowweight of the POPSmakes it easily
deployable on weather balloons. Each particle passing the laser beam creates a
pulse signal, which is used to calculate particle size. The measured particle
counts multiplied by their surface area assuming a spherical shape were bin-
ned by size to construct the particle area size distributions.

The CARMA sectional aerosol model coupled with the CESM global model
(24, 36) is used for this study. In CARMA, we track two types of aerosol in two
sets of size bins. One type consists of sulfuric acid particles formed through
nucleation and condensation of water and sulfuric acid vapor. The other set of
bins includes particles containing mixtures of organics, black carbon, sea salt,
dust, and condensed sulfate. We run CESM/CARMA with a horizontal resolu-
tion of 1.9° × 2.5° and 56 levels vertically (with 20 levels above 100 hPa). A
volatility-basis-set (37) method is used in CESM/CARMA to simulate SOA in-
cluding oxidation of volatile organic compounds (VOCs) and partitioning be-
tween gas and particle phase. Emission databases used for SO2, VOCs, and
primary organic aerosols (POA) are described in the ref. 38.

We conducted two types of model simulations to derive the contribution of
ASM to the stratospheric aerosol loading. Both simulations are driven by the

Modern-Era Retrospective Analysis for Research and Applications offline me-
teorology. The firstwas a control run of 5 y repeating the year 2011. The second
(3D-box run) was a 5-y simulation (with an additional 3-y spin-up, repeating the
year 2011) where no aerosol or condensable gases (i.e., SO2 and VOCs) within a
specified region were transported to the stratosphere. Both of these cases
have no volcanic emissions and we average the 5 y to obtain results. To
compare the ASM with the volcanic contribution we did a third simulation to
simulate the 2011 Nabro eruption (13.4°N, 41.7°E). Because we use a fixed
dynamics model formulation, neither ASM particles nor Nabro particles feed
back into changes in the dynamical or thermodynamical fields.

For the second type of simulation (3D-box run) we consideredmultiple cases.
To assess the importance of the ASM aerosol transported into the stratosphere,
we eliminated all particles and condensable gases inside the 3D box in the ASM
anticyclone region just below the tropopause (Fig. S1B, region colored in ma-
genta) from June through September. The depth of the 3D box is latitude-
dependent, ranging from 1 km (15°–25°N) to about 4 km (40°–45°N) with the
upper level set to be the local tropopause. The varying lower bound of the box
is due to the decreasing zonal mean tropopause height with latitude (from
∼16 km at 15°N to ∼12 km at 45°N). The upper level of the box is fixed because
the tropopause height within the ASM anticyclone is relatively constant with
latitude at 15–17 km. Due to the relatively high tropopause associated with the
ASM, any tracer transported out of the ASM dome either vertically or hori-
zontally is counted as a stratospheric source. In the lower latitudes (15°–25°N)
of the box weminimize the depth to one model layer (i.e., 100 hPa, 1 km thick);
from 25°N to 35°N the depth of the box is about 2 km from to 100 hPa to
118 hPa (model pressure level), from 35° to 40°N the depth of the box is about
3 km from 100 to 139 hPa (model pressure levels), and from 40° to 45°N the
depth of the box is about 4 km from 118 to 192 hPa (model pressure levels). To
estimate the lower limit of the ASM’s contribution to stratospheric aerosol
surface area, we apply a shallow 3D box with a 1-km-thick layer at 100 hPa in
the entire ASM region (Fig. S1B, volume marked by blue dashed lines). This
eliminates the vertical transport of aerosol to the stratosphere but still allows
the horizontal transport of aerosol from the ASM dome to the stratosphere. To
estimate the upper limit, we apply a deep box (Fig. S1B, volume colored in both
magenta and green) that eliminates both vertical and horizontal transport
from the ASM dome to the stratosphere. The model was run for 5 y using
2011 meteorology for both cases. To estimate the tropical contribution to the
stratospheric aerosol layer, we removed particles and condensable gases from
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ASM (in black).
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the tropical tropopause region (15°S–15°N, 0°–360°E) for the entire year to
quantify the contribution from tropical upwelling. The differences in aerosol
parameters between the control and 3D-box runs represent the contributions
from the ASM circulation or the tropics.

For the 2011 Nabro eruption simulation (13.4°N, 41.7°E) we injected 1.5 Tg
SO2 from 10 to 17 km (i.e., eight model vertical levels from 312 hPa to 100 hPa)
on June 13, following emissions estimated from previous studies (30–32). We
ran the model for 2 y from June 2011 to June 2013. To estimate the contri-
bution of volcanic eruptions to stratospheric aerosol relative to that of the
ASM we must consider the effective annual contribution from the 2011 Nabro
simulation over the longer time period from 2000 to 2015. A simple estimate is
to divide the 60% increase over the 1 y in the simulation by the 15 y of con-
sideration. That gives a total contribution of a Nabro-type eruption of 4%/y.
As stated in the text, the 2011 Nabro eruption accounted for 23% of the total
volcanic SO2 likely producing stratospheric aerosols for the period of 2000–
2015. We can then multiply 4%/y by the factor 1/23% to get an average

volcanic contribution to NH stratospheric aerosol of 17.4%/y, which is com-
parable to the ASM contribution of 15%/y.

The effectiveness of the ASM transport relative to inner tropics in populating
the stratosphere with aerosol (approximately a factor of 3) is calculated using
the relative contributions to the stratospheric global annual average aerosol
surface areas (7.5% vs. 35%, respectively), themonths of the year they are both
active (4 vs. 12 mo), and their relative sizes (ASM is 22% smaller than the inner
topics), which gives (7.5/35)*(12/4)(1/0.22) ∼3.
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